3.3.60 \(\int \frac {x^{11/2} (A+B x^2)}{(b x^2+c x^4)^{3/2}} \, dx\) [260]

3.3.60.1 Optimal result
3.3.60.2 Mathematica [C] (verified)
3.3.60.3 Rubi [A] (verified)
3.3.60.4 Maple [A] (verified)
3.3.60.5 Fricas [C] (verification not implemented)
3.3.60.6 Sympy [F(-1)]
3.3.60.7 Maxima [F]
3.3.60.8 Giac [F]
3.3.60.9 Mupad [F(-1)]

3.3.60.1 Optimal result

Integrand size = 28, antiderivative size = 340 \[ \int \frac {x^{11/2} \left (A+B x^2\right )}{\left (b x^2+c x^4\right )^{3/2}} \, dx=-\frac {(b B-A c) x^{9/2}}{b c \sqrt {b x^2+c x^4}}-\frac {3 (7 b B-5 A c) x^{3/2} \left (b+c x^2\right )}{5 c^{5/2} \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {b x^2+c x^4}}+\frac {(7 b B-5 A c) \sqrt {x} \sqrt {b x^2+c x^4}}{5 b c^2}+\frac {3 \sqrt [4]{b} (7 b B-5 A c) x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{5 c^{11/4} \sqrt {b x^2+c x^4}}-\frac {3 \sqrt [4]{b} (7 b B-5 A c) x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right ),\frac {1}{2}\right )}{10 c^{11/4} \sqrt {b x^2+c x^4}} \]

output
-(-A*c+B*b)*x^(9/2)/b/c/(c*x^4+b*x^2)^(1/2)-3/5*(-5*A*c+7*B*b)*x^(3/2)*(c* 
x^2+b)/c^(5/2)/(b^(1/2)+x*c^(1/2))/(c*x^4+b*x^2)^(1/2)+1/5*(-5*A*c+7*B*b)* 
x^(1/2)*(c*x^4+b*x^2)^(1/2)/b/c^2+3/5*b^(1/4)*(-5*A*c+7*B*b)*x*(cos(2*arct 
an(c^(1/4)*x^(1/2)/b^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x^(1/2)/b^(1/4) 
))*EllipticE(sin(2*arctan(c^(1/4)*x^(1/2)/b^(1/4))),1/2*2^(1/2))*(b^(1/2)+ 
x*c^(1/2))*((c*x^2+b)/(b^(1/2)+x*c^(1/2))^2)^(1/2)/c^(11/4)/(c*x^4+b*x^2)^ 
(1/2)-3/10*b^(1/4)*(-5*A*c+7*B*b)*x*(cos(2*arctan(c^(1/4)*x^(1/2)/b^(1/4)) 
)^2)^(1/2)/cos(2*arctan(c^(1/4)*x^(1/2)/b^(1/4)))*EllipticF(sin(2*arctan(c 
^(1/4)*x^(1/2)/b^(1/4))),1/2*2^(1/2))*(b^(1/2)+x*c^(1/2))*((c*x^2+b)/(b^(1 
/2)+x*c^(1/2))^2)^(1/2)/c^(11/4)/(c*x^4+b*x^2)^(1/2)
 
3.3.60.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.11 (sec) , antiderivative size = 85, normalized size of antiderivative = 0.25 \[ \int \frac {x^{11/2} \left (A+B x^2\right )}{\left (b x^2+c x^4\right )^{3/2}} \, dx=\frac {2 x^{5/2} \left (-7 b B+5 A c+B c x^2+(7 b B-5 A c) \sqrt {1+\frac {c x^2}{b}} \operatorname {Hypergeometric2F1}\left (\frac {3}{4},\frac {3}{2},\frac {7}{4},-\frac {c x^2}{b}\right )\right )}{5 c^2 \sqrt {x^2 \left (b+c x^2\right )}} \]

input
Integrate[(x^(11/2)*(A + B*x^2))/(b*x^2 + c*x^4)^(3/2),x]
 
output
(2*x^(5/2)*(-7*b*B + 5*A*c + B*c*x^2 + (7*b*B - 5*A*c)*Sqrt[1 + (c*x^2)/b] 
*Hypergeometric2F1[3/4, 3/2, 7/4, -((c*x^2)/b)]))/(5*c^2*Sqrt[x^2*(b + c*x 
^2)])
 
3.3.60.3 Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 334, normalized size of antiderivative = 0.98, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {1943, 1429, 1431, 266, 834, 27, 761, 1510}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{11/2} \left (A+B x^2\right )}{\left (b x^2+c x^4\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 1943

\(\displaystyle \frac {(7 b B-5 A c) \int \frac {x^{7/2}}{\sqrt {c x^4+b x^2}}dx}{2 b c}-\frac {x^{9/2} (b B-A c)}{b c \sqrt {b x^2+c x^4}}\)

\(\Big \downarrow \) 1429

\(\displaystyle \frac {(7 b B-5 A c) \left (\frac {2 \sqrt {x} \sqrt {b x^2+c x^4}}{5 c}-\frac {3 b \int \frac {x^{3/2}}{\sqrt {c x^4+b x^2}}dx}{5 c}\right )}{2 b c}-\frac {x^{9/2} (b B-A c)}{b c \sqrt {b x^2+c x^4}}\)

\(\Big \downarrow \) 1431

\(\displaystyle \frac {(7 b B-5 A c) \left (\frac {2 \sqrt {x} \sqrt {b x^2+c x^4}}{5 c}-\frac {3 b x \sqrt {b+c x^2} \int \frac {\sqrt {x}}{\sqrt {c x^2+b}}dx}{5 c \sqrt {b x^2+c x^4}}\right )}{2 b c}-\frac {x^{9/2} (b B-A c)}{b c \sqrt {b x^2+c x^4}}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {(7 b B-5 A c) \left (\frac {2 \sqrt {x} \sqrt {b x^2+c x^4}}{5 c}-\frac {6 b x \sqrt {b+c x^2} \int \frac {x}{\sqrt {c x^2+b}}d\sqrt {x}}{5 c \sqrt {b x^2+c x^4}}\right )}{2 b c}-\frac {x^{9/2} (b B-A c)}{b c \sqrt {b x^2+c x^4}}\)

\(\Big \downarrow \) 834

\(\displaystyle \frac {(7 b B-5 A c) \left (\frac {2 \sqrt {x} \sqrt {b x^2+c x^4}}{5 c}-\frac {6 b x \sqrt {b+c x^2} \left (\frac {\sqrt {b} \int \frac {1}{\sqrt {c x^2+b}}d\sqrt {x}}{\sqrt {c}}-\frac {\sqrt {b} \int \frac {\sqrt {b}-\sqrt {c} x}{\sqrt {b} \sqrt {c x^2+b}}d\sqrt {x}}{\sqrt {c}}\right )}{5 c \sqrt {b x^2+c x^4}}\right )}{2 b c}-\frac {x^{9/2} (b B-A c)}{b c \sqrt {b x^2+c x^4}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {(7 b B-5 A c) \left (\frac {2 \sqrt {x} \sqrt {b x^2+c x^4}}{5 c}-\frac {6 b x \sqrt {b+c x^2} \left (\frac {\sqrt {b} \int \frac {1}{\sqrt {c x^2+b}}d\sqrt {x}}{\sqrt {c}}-\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{\sqrt {c x^2+b}}d\sqrt {x}}{\sqrt {c}}\right )}{5 c \sqrt {b x^2+c x^4}}\right )}{2 b c}-\frac {x^{9/2} (b B-A c)}{b c \sqrt {b x^2+c x^4}}\)

\(\Big \downarrow \) 761

\(\displaystyle \frac {(7 b B-5 A c) \left (\frac {2 \sqrt {x} \sqrt {b x^2+c x^4}}{5 c}-\frac {6 b x \sqrt {b+c x^2} \left (\frac {\sqrt [4]{b} \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right ),\frac {1}{2}\right )}{2 c^{3/4} \sqrt {b+c x^2}}-\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{\sqrt {c x^2+b}}d\sqrt {x}}{\sqrt {c}}\right )}{5 c \sqrt {b x^2+c x^4}}\right )}{2 b c}-\frac {x^{9/2} (b B-A c)}{b c \sqrt {b x^2+c x^4}}\)

\(\Big \downarrow \) 1510

\(\displaystyle \frac {(7 b B-5 A c) \left (\frac {2 \sqrt {x} \sqrt {b x^2+c x^4}}{5 c}-\frac {6 b x \sqrt {b+c x^2} \left (\frac {\sqrt [4]{b} \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right ),\frac {1}{2}\right )}{2 c^{3/4} \sqrt {b+c x^2}}-\frac {\frac {\sqrt [4]{b} \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{\sqrt [4]{c} \sqrt {b+c x^2}}-\frac {\sqrt {x} \sqrt {b+c x^2}}{\sqrt {b}+\sqrt {c} x}}{\sqrt {c}}\right )}{5 c \sqrt {b x^2+c x^4}}\right )}{2 b c}-\frac {x^{9/2} (b B-A c)}{b c \sqrt {b x^2+c x^4}}\)

input
Int[(x^(11/2)*(A + B*x^2))/(b*x^2 + c*x^4)^(3/2),x]
 
output
-(((b*B - A*c)*x^(9/2))/(b*c*Sqrt[b*x^2 + c*x^4])) + ((7*b*B - 5*A*c)*((2* 
Sqrt[x]*Sqrt[b*x^2 + c*x^4])/(5*c) - (6*b*x*Sqrt[b + c*x^2]*(-((-((Sqrt[x] 
*Sqrt[b + c*x^2])/(Sqrt[b] + Sqrt[c]*x)) + (b^(1/4)*(Sqrt[b] + Sqrt[c]*x)* 
Sqrt[(b + c*x^2)/(Sqrt[b] + Sqrt[c]*x)^2]*EllipticE[2*ArcTan[(c^(1/4)*Sqrt 
[x])/b^(1/4)], 1/2])/(c^(1/4)*Sqrt[b + c*x^2]))/Sqrt[c]) + (b^(1/4)*(Sqrt[ 
b] + Sqrt[c]*x)*Sqrt[(b + c*x^2)/(Sqrt[b] + Sqrt[c]*x)^2]*EllipticF[2*ArcT 
an[(c^(1/4)*Sqrt[x])/b^(1/4)], 1/2])/(2*c^(3/4)*Sqrt[b + c*x^2])))/(5*c*Sq 
rt[b*x^2 + c*x^4])))/(2*b*c)
 

3.3.60.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 834
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, S 
imp[1/q   Int[1/Sqrt[a + b*x^4], x], x] - Simp[1/q   Int[(1 - q*x^2)/Sqrt[a 
 + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 1429
Int[((d_.)*(x_))^(m_)*((b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp 
[d^3*(d*x)^(m - 3)*((b*x^2 + c*x^4)^(p + 1)/(c*(m + 4*p + 1))), x] - Simp[b 
*d^2*((m + 2*p - 1)/(c*(m + 4*p + 1)))   Int[(d*x)^(m - 2)*(b*x^2 + c*x^4)^ 
p, x], x] /; FreeQ[{b, c, d, m, p}, x] &&  !IntegerQ[p] && GtQ[m + 2*p - 1, 
 0] && NeQ[m + 4*p + 1, 0]
 

rule 1431
Int[((d_.)*(x_))^(m_)*((b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp 
[(b*x^2 + c*x^4)^p/((d*x)^(2*p)*(b + c*x^2)^p)   Int[(d*x)^(m + 2*p)*(b + c 
*x^2)^p, x], x] /; FreeQ[{b, c, d, m, p}, x] &&  !IntegerQ[p]
 

rule 1510
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d* 
(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4]))*E 
llipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e 
}, x] && PosQ[c/a]
 

rule 1943
Int[((e_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(jn_.))^(p_)*((c_) + 
(d_.)*(x_)^(n_.)), x_Symbol] :> Simp[(-e^(j - 1))*(b*c - a*d)*(e*x)^(m - j 
+ 1)*((a*x^j + b*x^(j + n))^(p + 1)/(a*b*n*(p + 1))), x] - Simp[e^j*((a*d*( 
m + j*p + 1) - b*c*(m + n + p*(j + n) + 1))/(a*b*n*(p + 1)))   Int[(e*x)^(m 
 - j)*(a*x^j + b*x^(j + n))^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, j, m, 
n}, x] && EqQ[jn, j + n] &&  !IntegerQ[p] && NeQ[b*c - a*d, 0] && LtQ[p, -1 
] && GtQ[j, 0] && LeQ[j, m] && (GtQ[e, 0] || IntegerQ[j])
 
3.3.60.4 Maple [A] (verified)

Time = 2.44 (sec) , antiderivative size = 394, normalized size of antiderivative = 1.16

method result size
default \(\frac {x^{\frac {5}{2}} \left (c \,x^{2}+b \right ) \left (30 A b c \sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {2}\, \sqrt {\frac {-c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {-\frac {x c}{\sqrt {-b c}}}\, E\left (\sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right )-15 A b c \sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {2}\, \sqrt {\frac {-c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {-\frac {x c}{\sqrt {-b c}}}\, F\left (\sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right )-42 B \,b^{2} \sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {2}\, \sqrt {\frac {-c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {-\frac {x c}{\sqrt {-b c}}}\, E\left (\sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right )+21 B \,b^{2} \sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {2}\, \sqrt {\frac {-c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {-\frac {x c}{\sqrt {-b c}}}\, F\left (\sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right )+4 B \,c^{2} x^{4}-10 A \,c^{2} x^{2}+14 B b c \,x^{2}\right )}{10 \left (x^{4} c +b \,x^{2}\right )^{\frac {3}{2}} c^{3}}\) \(394\)
risch \(\frac {2 B \,x^{\frac {5}{2}} \left (c \,x^{2}+b \right )}{5 c^{2} \sqrt {x^{2} \left (c \,x^{2}+b \right )}}+\frac {\left (\frac {\left (5 A c -8 B b \right ) \sqrt {-b c}\, \sqrt {\frac {\left (x +\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}\, \sqrt {-\frac {x c}{\sqrt {-b c}}}\, \left (-\frac {2 \sqrt {-b c}\, E\left (\sqrt {\frac {\left (x +\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right )}{c}+\frac {\sqrt {-b c}\, F\left (\sqrt {\frac {\left (x +\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right )}{c}\right )}{c \sqrt {c \,x^{3}+b x}}-5 b \left (A c -B b \right ) \left (\frac {x^{2}}{b \sqrt {\left (x^{2}+\frac {b}{c}\right ) c x}}-\frac {\sqrt {-b c}\, \sqrt {\frac {\left (x +\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}\, \sqrt {-\frac {x c}{\sqrt {-b c}}}\, \left (-\frac {2 \sqrt {-b c}\, E\left (\sqrt {\frac {\left (x +\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right )}{c}+\frac {\sqrt {-b c}\, F\left (\sqrt {\frac {\left (x +\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right )}{c}\right )}{2 b c \sqrt {c \,x^{3}+b x}}\right )\right ) \sqrt {x}\, \sqrt {x \left (c \,x^{2}+b \right )}}{5 c^{2} \sqrt {x^{2} \left (c \,x^{2}+b \right )}}\) \(424\)

input
int(x^(11/2)*(B*x^2+A)/(c*x^4+b*x^2)^(3/2),x,method=_RETURNVERBOSE)
 
output
1/10/(c*x^4+b*x^2)^(3/2)*x^(5/2)*(c*x^2+b)*(30*A*b*c*((c*x+(-b*c)^(1/2))/( 
-b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*(-x*c/ 
(-b*c)^(1/2))^(1/2)*EllipticE(((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2* 
2^(1/2))-15*A*b*c*((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+( 
-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*(-x*c/(-b*c)^(1/2))^(1/2)*EllipticF(((c*x 
+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(1/2))-42*B*b^2*((c*x+(-b*c)^(1/2 
))/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*(- 
x*c/(-b*c)^(1/2))^(1/2)*EllipticE(((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2), 
1/2*2^(1/2))+21*B*b^2*((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c 
*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*(-x*c/(-b*c)^(1/2))^(1/2)*EllipticF(( 
(c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(1/2))+4*B*c^2*x^4-10*A*c^2*x 
^2+14*B*b*c*x^2)/c^3
 
3.3.60.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 106, normalized size of antiderivative = 0.31 \[ \int \frac {x^{11/2} \left (A+B x^2\right )}{\left (b x^2+c x^4\right )^{3/2}} \, dx=\frac {3 \, {\left (7 \, B b^{2} - 5 \, A b c + {\left (7 \, B b c - 5 \, A c^{2}\right )} x^{2}\right )} \sqrt {c} {\rm weierstrassZeta}\left (-\frac {4 \, b}{c}, 0, {\rm weierstrassPInverse}\left (-\frac {4 \, b}{c}, 0, x\right )\right ) + {\left (2 \, B c^{2} x^{2} + 7 \, B b c - 5 \, A c^{2}\right )} \sqrt {c x^{4} + b x^{2}} \sqrt {x}}{5 \, {\left (c^{4} x^{2} + b c^{3}\right )}} \]

input
integrate(x^(11/2)*(B*x^2+A)/(c*x^4+b*x^2)^(3/2),x, algorithm="fricas")
 
output
1/5*(3*(7*B*b^2 - 5*A*b*c + (7*B*b*c - 5*A*c^2)*x^2)*sqrt(c)*weierstrassZe 
ta(-4*b/c, 0, weierstrassPInverse(-4*b/c, 0, x)) + (2*B*c^2*x^2 + 7*B*b*c 
- 5*A*c^2)*sqrt(c*x^4 + b*x^2)*sqrt(x))/(c^4*x^2 + b*c^3)
 
3.3.60.6 Sympy [F(-1)]

Timed out. \[ \int \frac {x^{11/2} \left (A+B x^2\right )}{\left (b x^2+c x^4\right )^{3/2}} \, dx=\text {Timed out} \]

input
integrate(x**(11/2)*(B*x**2+A)/(c*x**4+b*x**2)**(3/2),x)
 
output
Timed out
 
3.3.60.7 Maxima [F]

\[ \int \frac {x^{11/2} \left (A+B x^2\right )}{\left (b x^2+c x^4\right )^{3/2}} \, dx=\int { \frac {{\left (B x^{2} + A\right )} x^{\frac {11}{2}}}{{\left (c x^{4} + b x^{2}\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(x^(11/2)*(B*x^2+A)/(c*x^4+b*x^2)^(3/2),x, algorithm="maxima")
 
output
integrate((B*x^2 + A)*x^(11/2)/(c*x^4 + b*x^2)^(3/2), x)
 
3.3.60.8 Giac [F]

\[ \int \frac {x^{11/2} \left (A+B x^2\right )}{\left (b x^2+c x^4\right )^{3/2}} \, dx=\int { \frac {{\left (B x^{2} + A\right )} x^{\frac {11}{2}}}{{\left (c x^{4} + b x^{2}\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(x^(11/2)*(B*x^2+A)/(c*x^4+b*x^2)^(3/2),x, algorithm="giac")
 
output
integrate((B*x^2 + A)*x^(11/2)/(c*x^4 + b*x^2)^(3/2), x)
 
3.3.60.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^{11/2} \left (A+B x^2\right )}{\left (b x^2+c x^4\right )^{3/2}} \, dx=\int \frac {x^{11/2}\,\left (B\,x^2+A\right )}{{\left (c\,x^4+b\,x^2\right )}^{3/2}} \,d x \]

input
int((x^(11/2)*(A + B*x^2))/(b*x^2 + c*x^4)^(3/2),x)
 
output
int((x^(11/2)*(A + B*x^2))/(b*x^2 + c*x^4)^(3/2), x)